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To understand vitamin D’s role during pregnancy, 

lactation and early infancy, we must first understand what 

vitamin D is, and its sources. Vitamin D is a preprohormone 

that is created in the epidermal layer of the skin following 

the exposure of 7-dehyrocholesterol to ultraviolet B light, 

within a specific wavelength between 290-315 nanometers 

[1], producing previtamin D. Through a thermal conversion 

in the skin, the previtamin D is converted into 

cholecalciferol or vitamin D3 and transported systemically 

via either vitamin D binding protein or albumin (see Figure 1 

below). Once in the liver, vitamin D is converted through a 

25-hydroxylation to 25-hydroxy-vitamin D (25(OH)D), where 

it then circulates throughout the body attached mainly to 

VDBP or albumin [2, 3]. It is converted by the proximal 

tubules in the kidney to the active hormone 1,25-dihydroxy-

vitamin (1,25(OH)2D) with a hydroxylation at the 1-alpha 

position that is megalin-mediated [4]. This conversion also is 

regulated by parathyroid hormone. When there is vitamin D 

deficiency in the body, circulating PTH increases [2, 3]. Not 

limited to the kidneys, there are receptors to vitamin D 

moieties throughout the body, and include immune cells, 

such as dendritic cells and monocytes/macrophages and 

lymphocytes [6-10], where 1,25(OH)2D can be synthesized 

within the nuclear membrane. 

 

One of 1,25(OH)2D’s roles is to maintain calcium 

homeostasis. With lower 1,25(OH)2D, there is decreased 

absorption of calcium from the intestines, resulting in a rise 

in PTH, that affects osteoclasts, necessitating the 

demineralization of bone to maintain normal circulating 

calcium levels. Mellanby’s discovery in 1919 that there was 

something missing in the diets of children with rickets that 

could be cured with cod liver oil then led McCollum in 1920 

to conduct experiments that showed it was not vitamin A 

but rather a “new” vitamin that he called “vitamin D” that 

was in cod liver oil, which cured rickets [11]. The discovery 

by Huldshinsky in 1919 that a reaction was produced in the 

skin following the use of mercury vapor lights to treat 

children with rickets, where exposure to one arm led to 

improvement in bony rachitic changes in the contralateral 

arm was a startling finding at the time, and suggested that a 

Figure 1: From Hollis and Wagner 2013 (5). 
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compound was synthesized in the light-exposed arm that 

could circulate and affect other sites [12, 13].  

While vitamin D can be obtained from the diet, the 

main source in older children and adults is via sunlight 

exposure. The average Western diet provides about 200 IU 

vitamin D per day whereas thousands of IU can be 

generated within minutes of full sunlight exposure, during 

summer months or near the equator, with diminishing 

synthesis during late fall and winter at higher latitudes, 

hence making individuals living at higher latitudes at 

greatest risk of vitamin D deficiency. Sunscreen blocks the 

synthesis of vitamin D [14-17]. Those with darker pigment 

have an excellent filter against the ravages of ultraviolet 

light but require more UV-B to penetrate the melanin for 

conversion of 7-dehyrocholesterol to previtamin D [18, 19]. 

This is true across the lifespan, with the exception that 

young infants in most societies have less sunlight exposure 

due to the fragility of the skin to sun exposure [20], and 

therefore, are dependent on the transfer of vitamin D in the 

breast milk or via formula that is fortified with vitamin D 

[21, 22]. 

During pregnancy, the fetus requires transfer of 

25(OH)D across the placenta to synthesize 1,25(OH)2D [21, 

23]. In comparison, during lactation, it is the parent 

compound vitamin D3 (or less commonly the plant or fungi-

derived ergocalciferol or D2) that crosses into the breast 

milk [21, 22, 24]. If a mother is vitamin D deficient, then 

during pregnancy, her fetus will be deficient [21, 23]. 

Similarly, during lactation, if a mother is vitamin D deficient, 

then her milk will be vitamin D deficient [25].  

Why is vitamin D important? Clearly, earlier studies 

demonstrated its role in maintaining calcium homeostasis, 

and indirectly, bone integrity. While there were reports of 

individuals with vitamin D deficiency having increased 

respiratory infections [26-29], it was not until the 21st 

century that vitamin D’s role in enabling both innate [9] and 

adaptive immunity [30-32] was appreciated.  

There is no question that vitamin D is important for 

early life, and by extension, for a woman during her 

pregnancy as the sole source of vitamin D for the 

developing fetus, and as the main source for her recipient 

breastfeeding infant [21, 33]. As mentioned earlier, there is 

transfer of vitamin D in the form of 25-hydroxy-vitamin D 

(25-OH-D) across the placenta which the fetus converts to 

1,25(OH)2D in the fetal kidneys and in other tissues where 

1-alpha-hydroxylase is present [34]. During lactation, it is 

the parent vitamin D3 (or less commonly D2) that is 

extruded into the breast milk and ingested by the recipient 

breastfeeding infant; little 25(OH)D or 1,25(OH)2D crosses 

into breast milk [22, 24].  

There has been an emphasis through the years on 

the vitamin D’s endocrine role in calcium and skeletal 

metabolism. There has been much interest in vitamin D and 

certainly heated discussions about the nonskeletal role of 

vitamin D—that vitamin D might be the link to explaining 

prematurity and adverse pregnancy outcomes such as 

preeclampsia, but randomized controlled trials, never 

powered for this intention, show variable effect—in some 

cases a strong, positive effect [23, 35-50], and in other 

cases, little effect [51, 52]. Recommendation of vitamin D 

supplementation at whatever dose—400 international units 

(IU) or 5000 IU—is left to the discretion of the health care 

provider. There is no consensus statement by the American 

College of Obstetricians and Gynecologists about vitamin D 

supplementation during pregnancy [53, 54]. The 

recommendation by the Academy of Pediatrics for the 

breastfeeding infant is supplementation of the infant alone 

with no mention of supplementation of the lactating 

woman herself except to mention that maternal deficiency 

leads to lower vitamin D concentrations in the breast milk, 

increasing the risk of deficiency in the recipient 

breastfeeding infant [55]. With confusing and opposing 

views, what are the issues and how can one rectify this 

conundrum? 

Our tendency to be excited about the latest new 

drug or therapy heralded a plethora of vitamin D 

supplementation studies conducted during pregnancy and 

lactation. Overwhelmingly, those women must at risk for 

vitamin D deficiency in the US during pregnancy and 

lactation are Black American and Hispanic women, 

underserved minorities, who also have higher rates of 

adverse pregnancy outcomes than white women [56, 57]. In 
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other regions of the world, women living at higher latitudes 

or who have darker skin pigmentation and limited sunlight 

exposure are at greatest risk of vitamin D deficiency [58], 

and it is those women who show the greatest improvement 

in health and pregnancy outcomes when dosed with vitamin 

D to achieve a total circulating 25(OH)D greater than 40 

ng/mL (100 nmol/L) [45], the point at which conversion of 

25(OH)D to 1,25(OH)2D is optimized, the only time during 

the lifecycle [23].  

Vitamin D has both direct and indirect effects on 

the immune system—promoting T regulatory cell 

differentiation while inhibiting differentiation of Th1 and 

Th17 cells, impairing developing and function of B cells, and 

reducing monocyte activation [59, 60]. Deficiency states 

affect the balance of these processes: Infants with vitamin D 

deficiency associate strongly with respiratory infections, 

chronic lung diseases such as bronchopulmonary dysplasia 

(BPD) and have a higher risk of respiratory syncytial virus 

(RSV) infection during the 1st year of life if they are found to 

be vitamin D deficient at birth [26, 27, 61-63]. More 

recently, a lower risk of asthma at 3 years of age in offspring 

[64-66] was demonstrated with improved maternal vitD 

status during pregnancy [67, 68]. In another study of 28 

infants who were examined <4 d after their first allergic 

reaction and age-matched controls all <9 months, infants 

who developed cow milk protein allergy (CMPA) had 

decreased T regulatory (Treg) cell counts (which correlated 

with decreased serum 25(OH)D) and increased frequency of 

IL4-secreting CD4 T cells compared to controls. Values of 

Tregs, IL4-secreting cells and vitD are good predictors of 

CMPA diagnosis. Basal 25(OH)D in CMPA infants also 

predicted those CMPA patients developing spontaneous 

tolerance in the first year [69]. Thus, emerging evidence 

points to serious consequences of both acute and chronic 

vitamin D deprivation, including the implications of vitamin 

D deficiency during early infant development [26, 28, 29, 

36-38, 69-95]. Observational trials show adverse health 

effects associated with vitamin D deficiency, but clinical trial 

results are less clear given the variability in dosing, maternal 

baseline vitamin D status, and maternal BMI affecting 

outcomes.  

The effect of maternal supplementation during 

lactation has been less well studied. In two pilot studies 

along with a larger NICHD trial that our group led, we 

sought to determine the optimal vitamin D supplementation 

dose for lactating women. We proposed that if a mother 

was vitamin D replete, her infant would not require vitamin 

D supplementation. In our randomized clinical trial, 216 

mother-infant exclusively breastfeeding pairs were 

randomized to mother and infant 400 IU/day or mother 

alone 6400 IU/day and infant 0 IU/day. 148 completed the 

study to visit #4 and 95 to visit #7 [25, 96]. Compared to 400 

IU vitD/day, 6400 IU/day safely and significantly increased 

maternal vitD and 25-hydroxyvitamin D (25(OH)D; 

expressed in nmol/L) from baseline (p<0.0001), 

independent of race. 25(OH)D concentration did not differ 

in breastfeeding infants in the 400 IU group directly 

receiving supplement compared to infants in the 6400 IU-

maternal supplemented only group. Across visits there were 

no differences in maternal or infant serum calcium, 

creatinine, phosphorus, or in urinary calcium/creatinine 

ratios as a function of treatment group. Safety was further 

established by comparing maternal safety parameters in 

postpartum lactating and nonlactating women and their 

infants [97].  

Data from these trials suggested that maternal 

vitamin D supplementation with 6400 IU/day safely repletes 

breast milk with adequate vitamin D to satisfy the 

requirement of the breastfeeding infant and offers an 

alternate strategy to direct infant vitamin D 

supplementation. These were important findings given that 

a major limiting factor of supplementing vitamin D directly 

to the infant is a higher rate of noncompliance, even more 

severe among minority and poor communities [98-101]. 

Other studies have replicated our findings using similar 

[102] as well as bolus dosing [103, 104], particularly applied 

in populations where there may be compliance issues. We 

also have shown that vitamin D status correlates with VDBP 

genotype with a greater response to supplementation in 

those with the 1s allele as opposed to the 1f allele [105]. 

Both VDR and VDBP genotype may play a role in infant 

response to exogenous vitamin D via mother’s milk and/or 
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oral supplement, and this remains to be studied. Much 

remains to be done to determine if there are differences in 

the effect of maternal vitamin D status on the immune 

signature of her milk, and likewise, on the recipient infant’s 

immune status. 

Along with clinical trials, there emerged during the 

last two decades an exponential number of basic science 

and translational research endeavors that have 

demonstrated vitamin D’s role beyond calcium—that of the 

immune system, affecting both innate and adaptive 

immunity [3, 32, 106]. There are direct effects of vitamin D 

that are more easily ascertained in the laboratory where 

various factors are controlled then in the clinical arena. 

Laboratory studies elucidate the role that vitamin D plays in 

maintaining health. In target cells, tightly regulated 

1,25(OH)2D activates the vitamin D receptor (VDR), a 

nuclear transcription factor, that then binds complexed with 

RXR to a vitamin D response element on DNA, a binding site 

located ~3000 times throughout the human genome. The 

activated VDR directly regulates expression of hundreds of 

known genes involved in diverse physiological processes, 

including calcium homeostasis, immune regulation, 

growth/development, redox balance, metabolism, 

epigenetic control, cell signaling and proliferation [47, 107-

111].  

We and others have shown that maternal vitamin 

D status during pregnancy and lactation affects DNA 

methylation and plays a critical role in metabolic processes 

and immune development and function [112-114] as well as 

epigenetic clock differences that might affect aging and 

maturation [47]. We tested new epigenetic clocks 

developed for neonates among a multiethnic population, 

and tested the hypothesis that maternal vitamin D 

supplementation would slow down the epigenetic 

gestational age acceleration (GAA) in newborn babies [47]. 

Maternal vitamin D3 supplementation appears to slow 

down the epigenetic gestational aging process in African 

American neonates.  

Additional support of the effect of maternal 

vitamin D status on both maternal and infant epigenome 

comes from Anderson, et al., [113] who showed differences 

in both maternal and infant DNA methylation patterns by 

treatment group (3800 IU/day vs placebo). Associated gene 

clusters showed strongest biologic relevance for cell 

migration/motility and cellular membrane function at birth 

and cadherin signaling and immune function at postpartum. 

Breastfed 4–6-week-old infants of intervention mothers 

showed DNA methylation gain and loss in 217 and 213 

CpGs, respectively, compared to controls. Genes showing 

differential methylation mapped most strongly to collagen 

metabolic processes and regulation of apoptosis. In another 

study by Chen et al involving obese African American 

participants, 4000 IU vitD3/day was associated with a 

decrease by 1.85 years compared to placebo using the 

Horrath age calculator [115]. Such findings support the 

premise that vitamin D has profound effects on genetic and 

epigenetic determinants and support the role that vitamin D 

status has on clinical health. 

Part of the problem in demonstrating vitamin D’s 

clinical effect, which has been discussed in the literature [5, 

116], is that the application of principles of pharmaceutical 

clinical trials to nutrient clinical trials is faulty [116]—in the 

former, a drug trial, the recipient of said drug starts with a 

preexisting blood concentration of zero; with nutrient and 

endocrine studies, there is some definable concentration in 

the blood of that nutrient or hormonal precursor—typically. 

The second issue is that blood levels do not automatically 

translate into what is seen at the tissue level [5]. Dosing and 

the range given to a particular participant in a clinical trial 

will be affected by specific binding proteins genotype—in 

the case of vitamin D—its vitamin D binding protein allele 

that impacts how tightly the vitamin D moiety is bound to 

the protein [105]. Other factors such as body mass index 

and the starting point of vitamin D status also affect 

circulating levels of vitamin D and its metabolites [52].  

As we attempt to understand vitamin D’s role in 

the body, particularly during times of extreme growth such 

as pregnancy and lactation and early childhood, it is 

important to consider those factors beyond the science that 

may be affecting our interpretation of clinical data. We 

must seek to understand what is lacking in our clinical trial 

that does not explain what we see in the laboratory or in 
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observational studies. The context in which we live and our 

desire for a simple answer drives us, yet a simple answer 

about vitamin D is elusive. Beyond the sound and fury over 

vitamin D clinical trials, one must focus on the physiological 

aspects of vitamin D to offer a glimpse at how vitamin D 

contributes to homeostasis and well-being in both the 

mother and her developing fetus during pregnancy that 

continues during lactation and early infancy. 
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